Skip to main content

Advertisement

Log in

The Influence of Surface Nanocrystallization Induced by Shot Peening on Corrosion Behavior of NiTi Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2023

This article has been updated

Abstract

Nickel-titanium (NiTi) shape memory alloys have been widely used as implant materials, due to their superior shape memory properties and similar mechanical behavior to bone tissue. The presence of nickel on the surface of nickel-titanium alloy and release of this ion in the body environment will result in some allergic reactions. In current study, we used shot pinning process to produce nanocrystalline nickel-titanium alloy with increased corrosion resistance. Field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD) analysis, and atomic force microscopy were employed to investigate the surface features of samples. The quantitative chemical analysis of NiTi and modified NiTi samples was conducted by energy dispersive x-ray method. The electrochemical behavior of NiTi alloy was evaluated using the potentiodynamic polarization scan and electrochemical impedance spectroscopy tests in Ringer solution after and prior to the shot pining process. The result of XRD analysis of modified samples showed an average crystalline size of 23 nm. Moreover, FE-SEM confirmed the development of a nanostructured alloy induced by shot pinning process. Modification of NiTi alloy by shot-peening process resulted in corrosion resistance improvement and decrease in the corrosion rate, which consequently led to less release rate of the toxic nickel ions in the corrosive environment, compared to the non-modified samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10

Similar content being viewed by others

Change history

References

  1. C.D.J. Barras and K.A. Myers, Nitinol-Its use in Vascular Surgery and Other Applications, Eur. J. Vasc. Endovasc. Surg., 2000, 19(6), p 564–569

    Article  CAS  Google Scholar 

  2. M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Manufacturing and Processing of NiTi Implants: A Review, Prog. Mater Sci., 2012, 57(5), p 911–946

    Article  CAS  Google Scholar 

  3. F.X. Gil, J.M. Manero, and J.A. Planell, Relevant Aspects in the Clinical Applications of NiTi Shape Memory Alloys, J. Mater. Sci., 1996, 7(7), p 403–406

    CAS  Google Scholar 

  4. B.J. Park and Y.K. Kim, Metallic Biomaterials, Balance, 2003, 1, p 50

    Google Scholar 

  5. K.W.K. Yeung, R.W.Y. Poon, X.Y. Liu, J.P.Y. Ho, C.Y. Chung, P.K. Chu, W.W. Lu, D. Chan, and K.M.C. Cheung, Investigation of Nickel Suppression and Cytocompatibility of Surface-Treated Nickel-Titanium Shape Memory Alloys by Using Plasma Immersion Ion Implantation, J. Biomed. Mater. Res. Part A, 2005, 72(3), p 238–245

    Article  CAS  Google Scholar 

  6. H. Maleki-Ghaleh, J. Khalil-Allafi, M. Sadeghpour-Motlagh, M.S. Shakeri, S. Masoudfar, A. Farrokhi, Y.B. Khosrowshahi, A. Nadernezhad, M.H. Siadati, M. Javidi, M. Shakiba, and E. Aghaie, Effect of Surface Modification by Nitrogen Ion Implantation on the Electrochemical and Cellular Behaviors of Super-Elastic NiTi Shape Memory Alloy, J. Mater. Sci., 2014, 25(12), p 2605–2617

    CAS  Google Scholar 

  7. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng., 2004, 47(3), p 49–121

    Article  Google Scholar 

  8. A.K. Shukla, R. Balasubramaniam, and S. Bhargava, Properties of Passive Film Formed on CP Titanium, Ti-6Al-4V and Ti-13.4 Al-29Nb Alloys in Simulated Human Body Conditions, Intermetallics, 2005, 13(6), p 631–637

    Article  CAS  Google Scholar 

  9. S. Shabalovskaya, J. Anderegg, and J.V. Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4(3), p 447–467

    Article  CAS  Google Scholar 

  10. T. Sun, L.P. Wang, and M. Wang (Ti, O)/Ti and (Ti, O, N)/Ti Composite Coatings Fabricated via PIIID for the Medical Application of NiTi Shape Memory Alloy, J. Biomed. Mater. Res. B, 2011, 96(2), p 249–260

    Article  Google Scholar 

  11. X.Y. Wang and D.Y. Li, Mechanical, Electrochemical and Tribological Properties of Nano-Crystalline Surface of 304 Stainless Steel, Wear, 2003, 255(7), p 836–845

    Article  CAS  Google Scholar 

  12. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu, Corrosion Resistance of Ultra Fine-Grained Ti, Scr. Mater., 2004, 51(3), p 225–229

    Article  CAS  Google Scholar 

  13. L. Wang, Y. Lin, Zh Zeng, W. Liu, Q. Xue, L. Hu, and J. Zhang, Electrochemical Corrosion Behavior of Nanocrystalline Co Coatings Explained by Higher Grain Boundary Density, Electrochim. Acta, 2007, 52(13), p 4342–4350

    Article  CAS  Google Scholar 

  14. A. Balakrishnan, B.C. Lee, T.N. Kim, and B.B. Panigrahi, Corrosion Behaviour of Ultra Fine Grained Titanium in Simulated Body Fluid for Implant Application, Trends Biomater. Artif. Organs, 2008, 22(1), p 194–208

    Google Scholar 

  15. C.T. Kwok, F.T. Cheng, H.C. Man, and W.H. Ding, Corrosion Characteristics of Nanostructured Layer on 316L Stainless Steel Fabricated by Cavitation-Annealing, Mater. Lett., 2006, 60(19), p 2419–2422

    Article  CAS  Google Scholar 

  16. M. Umemoto, Y. Todaka, and K. Tsuchiya, Formation of Nanocrystalline Structure in Steels by Air Blast Shot Peening, Mater. Trans., 2003, 44(7), p 1488–1493

    Article  CAS  Google Scholar 

  17. S. Bagherifard, I.F. Pariente, R. Ghelichi, and M. Guagliano, Fatigue Properties of Nanocrystallized Surfaces Obtained by High Energy Shot Peening, Procedia Eng., 2010, 2(1), p 1683–1690

    Article  Google Scholar 

  18. X.Y. Wang and D.Y. Li, Mechanical and Electrochemical Behavior of Nanocrystalline Surface of 304 Stainless Steel, Electrochim. Acta, 2002, 47(24), p 3939–3947

    Article  CAS  Google Scholar 

  19. M. Mhaede, F. Pastorek, and B. Hadzima, Influence of Shot Peening on Corrosion Properties of Biocompatible Magnesium Alloy AZ31 Coated by Dicalcium Phosphate Dihydrate (DCPD), Mater. Sci. Eng. C, 2014, 39, p 330–335

    Article  CAS  Google Scholar 

  20. T. Wang, J. Yu, and B. Dong, Surface Nanocrystallization Induced by Shot Peening and Its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel, Surf. Coat. Technol., 2006, 200(16), p 4777–4781

    Article  CAS  Google Scholar 

  21. K. Ce and R. Birringer, Estimating Grain-Size Distributions in Nanocrystalline Materials from x-ray Diffraction Profile Analysis, Philos. Mag. A, 1998, 77(3), p 621–640

    Article  Google Scholar 

  22. R. Guinebretière, X-ray Diffraction by Polycrystalline Materials, ISTE Ltd, London, 2007

  23. S.N. Rosenbloom, R. Corbett, An Assessment of ASTM F 2129 Electrochemical Testing of Small Medical Implants—Lessons Learned, Corrosion 2007 Conference & Expo, 2007, p 11–15.

  24. X.P. Jiang, X.Y. Wang, J.X. Li, D.Y. Li, C.-S. Man, M.J. Shepard, and T. Zhai, Enhancement of Fatigue and Corrosion Properties of Pure Ti by Sandblasting, Mater. Sci. Eng. A, 2006, 429(1), p 30–35

    Article  Google Scholar 

  25. T. Hu, Y.C. Xin, S.L. Wu, C.L. Chu, J. Lu, L. Guan, H.M. Chen, T.F. Hung, K.W.K. Yeung, and P.K. Chu, Corrosion Behavior on Orthopedic NiTi Alloy with Nanocrystalline/Amorphous Surface, Mater. Chem. Phys., 2011, 126(1), p 102–107

    Article  CAS  Google Scholar 

  26. F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, and R.Z. Valiev, In Vitro Corrosion and Cytotoxicity on Microcrystalline, Nanocrystalline and Amorphous NiTi Alloy Fabricated by High Pressure Torsion, Mater. Lett., 2010, 64(8), p 983–986

    Article  CAS  Google Scholar 

  27. Z.J. Zheng, Y. Gao, Y. Gui, and M. Zhu, Corrosion Behaviour of Nanocrystalline 304 Stainless Steel Prepared by Equal Channel Angular Pressing, Corros. Sci., 2012, 54, p 60–67

    Article  CAS  Google Scholar 

  28. T. Hu, Ch Chu, Y. Xin, Sh Wu, K.W.K. Yeung, and P.K. Chu, Corrosion Products and Mechanism on NiTi Shape Memory Alloy in Physiological Environment, J. Mater. Res., 2010, 25(02), p 350–358

    Article  CAS  Google Scholar 

  29. H.B. Lu, Y. Li, and F.H. Wang, Synthesis of Porous Copper from Nanocrystalline Two-Phase Cu-Zr Film by Dealloying, Scr. Mater., 2007, 56(2), p 165–168

    Article  CAS  Google Scholar 

  30. L. Liu, Y. Li, and F. Wang, Electrochemical Corrosion Behavior of Nanocrystalline Materials—A Review, J. Mater. Sci. Technol., 2010, 26(1), p 1–14

    Article  Google Scholar 

  31. H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S.G. Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, and K.J. Kurzydlowski, Electrochemical and Cellular Behavior of Ultrafine-Grained Titanium In Vitro, Mater. Sci. Eng. C, 2014, 39, p 299–304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sadrnezhaad.

Additional information

The original version of this article was revised: In this article as originally published, the corresponding author was identified incorrectly as S. Olumi. The corresponding author for this article is S. K. Sadrnezhaad. S. K. Sadrnezhaad may be contacted at Sadrnezh@yahoo.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olumi, S., Sadrnezhaad, S.K. & Atai, M. The Influence of Surface Nanocrystallization Induced by Shot Peening on Corrosion Behavior of NiTi Alloy. J. of Materi Eng and Perform 24, 3093–3099 (2015). https://doi.org/10.1007/s11665-015-1570-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1570-6

Keywords

Navigation